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The deformation matrix and the deformation ellipsoid
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Abstract—Homogeneous strain can be computed most easily by the methods of matrix algebra. Lines, planes and
ellipsoids represented in matrix form can be homogeneously deformed by simple matrix multiplication by linear
transformation matrices, the elements of which are the coefficients of the transformation equations. Deformation
matrices or linear transformation matrices which cause geological-type homogeneous strain are divided into four
classes based on the presence or absence of symmetry and/or orthogonality. The nature of the homogeneous
strain caused by each class of deformation matrix is examined. Orthogonal-symmetrical and orthogonal matrices
cause rotation. Symmetrical matrices cause irrotational strain with co-axial strain as a special case. Matrices
which are neither orthogonal nor symmetrical cause many different types of rotational strain, some of which are

examined.

INTRODUCTION

IN STRUCTURAL geology text-books the study of strain is
often introduced by citing the linear transformation
equations:

X; = apx + apx + apx;

»

X; = GyX) + GpX; + Gy3%

X3 = ayX) + 3% + a3x;
and then deriving from them a series of algebraic expres-
sions defining the geometry of deformation (e.g. Jaeger
1956). Presentation is often confined to two-
dimensional deformation because the algebraic equa-
tions become very cumbersome for three-dimensional
deformation.

The deformation and its geometry are much more
easily studied when represented in matrix form. The
matrix algebra required may be found in elementary
text-books but not presented in terms of three-
dimensional deformation and lacking the necessary co-
ordinate geometry.

Equations (1) are more conveniently represented in
matrix form as follows:

(1)

x = Ax )
where x = (x;x,x;)7
11 812 Q13
and A = |Gy Gy Ay |
a3, @32 43

A is the linear transformation matrix when used in the
relation (2) because it is then an operator performing
linear transformation.

For geological-type deformation the elements of A
must all be real and A must be non-singular, thatis det A
# 0. The necessity for real elements for geological-type
operations is obvious. If det A = 0 then the transforma-
tion becomes a projection or mapping of three dimen-
sions onto two- or even one-dimensional space and no
geological deformation can take this form. In the rest of
this paper D will be a 3 X3 real, non-singular linear
transformation matrix and it will be called the deforma-

tion matrix. However, it will be shown that not all such
matrices give rise to geological-type deformation.

HOMOGENEOUS STRAIN AND THE DEFOR-
MATION MATRIX

In (2) if a given Dis substituted for A and xis set equal
in turn to all unit vectors then x’' becomes in turn all
radius vectors of the form into which D transforms a
sphere of unit radius.

In matrix terms this transformation is performed as
follows. Equation (2) is solved for x in terms of x':

x=Dx
and substituted into the unit sphere
2 + x22 + x32 =

represented by the identity matrix, I E)) }

as follows: (D'HT1ID?! 4)
simplifying to (DH)TD' = Q, (5)
Tuv
Q = |u s w]| being the matrix representation of the
w t_| central quadric

re+sB+tx3+2ux x+20x x5+
2wx, x3=1. 6)
The same transformation can be performed algebrai-
cally. Equations (1) are solved for xin terms of x’ giving:

X, = apx; + apXx; + ai32;

X; = ax + apx; + axz;

X3 = a3 x| + a5X; + a33%;
where a';; are linear functions of a;. Equations (7) are
substltuted in equation (3) to give:

(7

(aj,%; + aix; + ajx35)? + (@5,x] + a3x; + a3x3)°
+ (a3,x] + a3x; + azx3)° = 1.

(8

Equation (8) can be expanded and simplified to the form
(6) obtained before
e+ 53 + b3+ 2ux;x, + 2vxx; + 2wxx; = 1
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where r s - - w are all simple but lengthy function of a;
and therefore of a;;.

Equation (6) is the standard form for all central quad-
rics centred on the origin and is most conveniently rep-
resented by the matrix Q. The particular form of a
central quadric is usually determined from its eigen-
values. Here, a quicker method is available. The LHS of
equation (8) is a sum of squares and is therefore positive
for all real non-zero values of x,, x, and x,. Thus, Qin (5)
is positive definite (it has three non-zero positive eigen-
values) and therefore both Qand equation (6) represent
an ellipsoid centred on the origin of the reference axes
and completely specified by the elements of Q with
respect to shape, volume and orientation relative to the
reference axes, X;, X, and x,. In the rest of the paper such
positive definite matrices will be called E.

In (4) above, a sphere, I, was deformed to an ellipsoid.
Any ellipsoid of any orientation may be deformed by
substituting its matrix, E, for Iin (4)

(D")'E’D™" = Qg %
Again, Qy is a central quadric whose form, normally is
most easily obtained from the eigenvalues. Here the
determination may be done as before. It is clear that
substitution of equations (7) into a sum of squares equa-
tion (8) representing any ellipsoid leaves the sum of
squares intact so that Q in (9) is again positive definite
and represents an ellipsoid. Thus

(D)ED = Eg. (92)

In geological terms E,; is the starting deformation
ellipsoid, and Ey is the resultant deformation ellipsoid.
The deformation ellipsoid, E = (D-!)T (D!) = Q from
(5), representing the deformation caused by D, is the
incremental (or the superposed) deformation ellipsoid.

The deformation matrix may be used to deform planes
and lines as well as ellipsoids. The equation of a plane
passing through the origin of the reference axes is given
by

Ix; + mx, + nx; = 0 (10)
where I, m and n are the direction cosines of the normal
of the plane.

In algebraic terms the plane may be deformed by the
substitution of (7) into (10) to give:
lai,x] + ai,x; + a{sx3) + m(azx] + a35,x; + a33x3) +
n(a3,x; + ax; + ajx) =0
which simplifies to the standard form for a plane
(laj; + may, + nay,) xi + (laj; + ma;; + nai,) x5 + (laj;
+ ma3; + naz;) x5 = 0.

Therefore, during deformations by D, planes remain
planes and, furthermore, parallel planes remain parallel.
In matrix terms this deformation takes the form

pi = piD™! (11)
where p, and p, are the direction cosines and the direc-
tion numbers respectively of the plane normal before
and after the deformation.

Straight lines are defined by the intersection of non-
parallel planes, therefore, during deformation by D,
straight lines remain straight lines and parallel lines
remain parallel. In matrix terms the deformation of
straight lines is given by

L=Dl (12)
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where [, and I, are the direction cosines and direction
numbers respectively of the line before and after the
deformation. The factor by which the line has been elon-
gated, e, is given by

e =101 (13)

Thus, the operation performed by the linear
transformation matrix or deformation matrix, D, is
homogeneous strain. However, there are many types of
homogeneous strain which are not geologically possible
even though they obey the usual rules that straight lines
remain straight. It is the main purpose of this paper to
identify and examine those deformation matrices which
produce deformations which might occur geologically.

Equations (11) and (12) can be used to compute a
deformation in a single step, but if written in the form

li., = D, Pl = pTD!
can be used to compute a progressive deformation in a
series of steps or increments. The successive solutions
can then be used to plot the movement paths of the poles
of the planes and lineations. Equation (92) in the form
(D7) E, D;' = E,\,
can be used to compute successive resultant deformation
ellipsoids and thus plot the deformation path.

An alternative approach is to construct a deformation
matrix of deformation rates involving a factor t repre-
senting time, allowing the deformation to be run for any
desired period of time (Ramberg & Ghosh 1977). This
method is limited to the computation of progressive
deformations with deformation paths of constant k -
value; the incremental deformation ellipsoid is
invariant.

Before giving further consideration to the deforma-
tion matrix, it is necessary to define some terms. For
each deformation matrix, D, there is a deformation
ellipsoid, E, given by

E= DY D! from (5)
where E=RMRT
X2 0 0
andM=|0 UX2 0
0 0 X3

Note that 1/X3, 1/X% and 1/X3 are the eigenvalues of E,
and that Ris a 3 X 3 orthogonal matrix the columns of
which are the eigenvectors of E in the same order as the
eigenvalues. Also, X, X;, and Xj give the magnitudes of
the three principal axes of the ellipsoid but not neces-
sarily in any given order of magnitude, and the eigenvec-
tors are the direction cosines defining the orientations of
the respective axes. Alternatively, the principal axes of
deformation ellipsoid may be called the major, inter-
mediate and minor axes and defined as follows:
X>Y>Zand XYZ= V/V;,=d

where V, and V are the volumes of the deformation
ellipsoid before and after deformation by D. Thus, d is
the dilatation factor. If the original sphere is defined as
having unit volume then d is the volume of the deforma-
tion ellipsoid as well as its dilatation factor. However, it
is usually more convenient to define the original sphere
as having unit radius, in which case the volume of the
ellipsoid is given by
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V = ind = 4n(det E) V2 = 4m det D.
These relations depend on
det E = 1/(x*y*2%) & det E = det (D'})TD™!)
= 1/(det D)>.
In this paper the original sphere is defined as having unit
radius.

Although every deformation matrix, D, has
associated with it one particular deformation ellipsoid E,
given by (13), nevertheless that deformation matrix is
not unique to that deformation ellipsoid. For this reason
any classification of deformations must be based on the
deformation matrix and not on either the deformation
ellipsoid or on any or all of its parameters.

Deformation matrices may be divided into the fol-
lowing four main classes based on the fact that such
matrices may be either symmetrical or nonsymmetrical,
and independently of this they may be orthogonal or
non-orthogonal:  orthogonal-symmetrical, ortho-
gonal-non-symmetrical, symmetrical-non-orthogonal
and non-orthogonal-non-symmetrical. It should be
noted that a rigid body rotation of Drelative to the refer-
ence axes, that is an orthogonal similarity transform of
the type

D'=RDR"

where R is any orthogonal matrix, can change neither
the state of symmetry nor the state of orthogonality of D.
Therefore, this classification of deformation matrices is
invariant under a change of base or a rigid body rotation.
In the above cited relationship I is said to be similarto
D. The word ‘similar’ wherever used below, has this
meaning.

The systems of co-ordinate axes, X, X,, X; employed
by mathematicians are usually, but not invariably, right-
handed. However, the geological system involving a
clockwise graduated compass rose and a positive zenith
direction is left-handed. Since the analytical geometry
used in this paper may be expressed in either right- or
left-handed terms the latter has been employed as being
more geological.

ORTHOGONAL-SYMMETRICAL DEFOR-
MATION MATRICES, D

Symmetrical matrices have the form

a d e
[d b f].
e f ¢

Orthogonal matrices are those in which the sum of
squares of the three elements in each column and in each
row are equal to unity. Each row and each column may
therefore be treated as direction cosines. The three rows
form a mutually orthogonal set of directions as do the
three columns. Most of the properties of orthogonal
matrices are discussed more conveniently in the next
section. This section is concerned with orthogonal mat-
rices which are also symmetrical. For orthogonal-
symmetrical matrices
o:D-l = osDT = o5
therefore (5) simplifies to
(osD-l)T ospl=0p2=F=RMRT=1
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so that

s = El/z = RMl/zRT = 11/2 . (14)
M Y2 is a diagonal matrix and since it is similar to the
orthogonal matrix D it must also be orthogonal. Thus,
the elements along the leading diagonal must be =1. If
the special case of R = Iis considered then there are four
different solutions to (14) given by the following sets of
elements forming the leading diagonal in unspecified
order:+1,+1,+1;-1,-1,+1;~1,+1,+1;-1,-1,-1. The
first solution is the identity matrix which when serving as
a deformation matrix gives rise to zero deformation. The
solutions with one positive and two negative unit roots
cause rotations of 180° (and no change of length) about
the reference axis association with the positive root. The
solutions with a single negative root and two positive
ones cause a reflection across the plane normal to the
reference axis associated with the negative root. It may
be noted that in the solution with two negative roots
mentioned above two such reflections occur, but two
reflections across orthogonal planes are exactly equiva-
lent to a rotation of 180° about the line of intersection of
the planes. The solution with three negative roots causes
three orthogonal reflections which is equivalent to an
inversion across the origin of the reference axes.

The deformation matrices involving 1 or 3 reflections,
that is those for which det”*D = -1, do not cause
geological-type deformations. Those for which det®*D =
+1, cause no deformation or a rotation of 180° without
change of length since all orthogonal-symmetrical
deformation matrices are associated with unit radius
spheres I as deformation ellipsoids.

In relation (14) if R is any orthogonal matrix then the
same interpretations apply except that the axial.
directions are no longer parallel to a reference axis but to
a direction defined by one of the columns of R treated as
direction cosines. Thus, when det*D = +1 the eigen-
vector associated with the single positive root fixes the
attitude relative to the reference axes of the axis about
which the 180° rotation takes place. A deformation
matrix whose operation is 180° rotation about an axis at
any desired inclination to the reference axes may be con-
structed by substituting into (14) a suitably chosen R.
All such matrices will be both orthogonal and symmet-
rical.

ORTHOGONAL NON-SYMMETRICAL DEFOR-
MATION MATRICES, °D

For orthogonal matrices °D! = °DT
so that equation (5) simplifies to
(DY D'!'=°D°D"=E=RMR" =L
Taking first the case where R = I so that
oDoDT = 11/2 (11/2)1‘
there are two solutions, as follows, for every value of 6

from O to 2=
+1 0 0
I:O cos 6 sin9i|=
0 -sin® cosbo

The eigenvalues of these two solutions and of all ortho-
gonal non-symmetrical matrices are 1, cos 8 *isin 6.

(15)

‘D = (16)
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Therefore, det °D = x1 for all orthogonal matrices. The
operation performed by all orthogonal matrices is rota-
tion if the real root is +1 and rotation together with
reflection across the plane normal to the rotation axis if
the real root is —1. Therefore, only deformation matrices
with det °D = +1 cause geological-type deformation.
For (15) it is clear that the deformation ellipsoid is a
sphere of unit radius so that no change of length accom-
panies the rotations.

The operation performed by °D [(16) and above]
when det °D = +1 is a rotation of 6° clockwise about the
x, reference axis considered from the positive end of the
axis looking towards the origin (Flinn 1979, pp. 90-93,
Figs. 2 & 3).

By means of a suitably chosen R in

°IY = R°DRT

the rotation axis may be given any desired orientation
because the rotation caused by °D’ takes place about the
direction defined by the column of R associated with the
real unit root [the first column for °D as in (16)], and the
rotation is 8° where the complex roots are cos 8 = isin 8.
Alternatively the direction cosines of the rotation axis
are

(Imn)T = (ay—ay; a3~ ay3 63— ay)7

; : a;; a3 a3
it°D = Q@ QG a3
: Q4 3 43

and the angle of rotation 0 is

cos 0 =2 (tr°D-1) = (a;; + ap, + a33 - 1).
°D may be used to rotate directions [, to I, by means of
(12), that is

,1 = °p lo.

The columns of °D are the new direction cosines of the
directions which before the deformation were parallel to
the reference axes, while the rows of °D are the direction
cosines before the deformation, of directions which are
parallel to the reference axis after the deformation. The
operation is a rigid body rotation since the angle be-
tween any two directions is the same before and after the
rotation.

All orthogonal deformation matrices with positive
unit determinant may be used to perform rigid body
rotations on other deformation matrices, orthogonal or
otherwise, and on ellipsoids by means of orthogonal
similarity transformations as follows:

DR = ODI DOODTI.

Ep = °D,E,’DY.
The matrix R used throughout this paper is an ortho-
gonal matrix of type det(°D) = +1. The symbol R is
used instead of °D when the matrix is constructed with
eigenvectors to be used to set the orientation of another
matrix rather than to ‘deform’ it. There is no
mathematical difference, only one of geological
interpretation.

A sequence of rotations °D,, °D,, °D; etc. can be com-
bined as follows:

°Dr = °D; °D, °D,
provided the rotations took place in the order 1, 2, 3. In
general, a different resultant matrix, °Dy, and therefore
a different resultant deformation would be obtained if
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they were multiplied together in a different order.
Orthogonal deformation matrices can be multiplied
together in any order only when they have parallel rota-
tion axes.

SYMMETRICAL (NON-ORTHOGONAL)
MATRICES, ‘D

For symmetrical matrices ‘D = *D7 so that equation
(5) simplifies to

' (DYHYD ! =*D"D"! = E= RMRT (17)
where M is a diagonal matrix in which not all the
diagonal elements are unity and in most cases none are.
It follows that

D= R (MI/Z) -1RT (18)
X 0 0
where (MY2)! = 0 =X, 0
0 0 =X,

X, X; and Xj being the principal axes of the deforma-
tion ellipsoid, Ein (17). If R = Iin (18) then the opera-
tion performed by D in (19)

I, = *Di, (19)
is a change of length of a direction parallel to the x refer-
ence axis by a factor =X, of a direction parallel to the x,
reference axis by a factor = X, and of a direction parallel
to the x, reference axis by a factor =X, all without a
change of orientation. All other directions suffer a
change of length by some intermediate factor together
with a change of orientation. A negative factor causes a
change of length together with a reflection across the
plane normal to the axis associated with the factor.
Therefore, only positive definite symmetrical deforma-
tion matrices are of geological significance. If det *D is
negative there are either one or three negative factors
(eigenvalues) and if the determinant is positive but the
matrix is not positive definite there are two negative fac-
tors (eigenvalues) all associated with reflections.

If *D has three positive eigenvalues, that is *D is posi-
tive definite, then its operation is pure shear or three-
dimensional irrotational strain. If R = I'in (17) and (18)
then the three irrotational directions, the axes of the
deformation ellipsoid, are parallel to the reference axes.
They can be set at any desired angles to the reference
axes by constructing R in (17) and (18) with the direc-
tion cosines of the required directions forming the col-
umns of R in the required order. In any given °D the
eigenvalues specify the magnitudes of the deformation
ellipsoid axes and the eigenvectors their orientations.

A deformation matrix *D = R(M*2)"! R can be set to
operate at any desired attitude to the reference axes,
specified by R,;, as follows

‘D = R, R*DR R”,.
A deformation matrix *D can be used to deform an ellip-
soid
Eg = ‘DE;sD™ = EV? E,EV?
where
EV? = (RMRD 12 = R MV/2RT.

When *D, is used to deform an ellipsoid, E,, into a resul-
tant ellipsoid, Eg, the axes of the deformed ellipsoid
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rotate continuously from its starting attitude to its resul-
tant attitude. In general, it is only the ellipsoid axes of
the imposed or incremental deformation ellipsoid, E,
which remain stationary during irrotational strain. In the
special case in which the ellipsoid axes for both the orig-
inal and the superposed deformations are parallel but
not necessarily largest to largest etc. both sets of axes
remain stationary during the deformation which is then
called co-axial. If E, = RM;, R and *D = RM, R” then
Exr=RM RTRM,RTRM RT
= R My R”.

The deformation path for a co-axial deformation and
the lack of rotation of the resultant ellipsoid axes during
the deformation are shown in Fig. 1. If the original ellip-
soid E; is rotated so that its axes are no longer paraliel to
those of ‘D and the same deformation superposed the
resultant ellipsoid Eg rotates during the deformation
(Fig. 1). The behaviour of the deformation ellipsoid
itself during the deformation can be monitored by
applying the same deformation to a sphere, E; = L
Figure 1 shows that the axes of the deformation ellipsoid
remain stationary during the deformation.

Deformation matrices, ‘D;, can be combined by
multiplication but such multiplications are commutative
only for coaxial deformation. In non-coaxial deforma-
tions deformation matrices must be multiplied together
in the order in which the deformations occur, that is if
the order is 1, 2, 3, then

I; = *‘Dy’D;°D Iy, = ‘D,

In general det D = d ¥ 1 and the operation per-
formed by °D involves dilatation. It is convenient to
define dilatation as a change in dimensions dependent
only on volume change so that for d<1, X, Y, Zdecrease
in length or remain unaltered and for d>1, X, Y, Z

o2 04 ot ot 0 r2 4 o
Inb (b}
Fig. 1. (a) Equal-area projection. (b) Deformation plot. Coaxial
deformation of a sphere E{. X4, Y#, ZA in (a). Deformation path A in
(b). Coaxial deformation of an ellipsoid E3 X5 Y2 2% in (a).
Deformation path B in (b). Irrotational non-coaxial deformation of an
ellipsoid ES. XS, Y, Z€ in (a). Deformation path Cin (b).

1 00
Starting ellipsoid — 3, E4= {0 1 0],
0 0 1
038 0 0 0.84 —-0.13 -0.72
E} = 0 1.21 0 [,E§= }|—0.13 1.38 0.36
0 0 217 —-0.72 0.36 1.55
Deformation matrix — A — 5 increments,
1.47 0 0
DABC = 0 0.98 0
0 0 0.7

N.B. In Figs. 1-5 the reference axes plot as +x, — centre, +x, — top,
+x, - .h.s. of the projection, i.e. x, is zenith, x, is north and x; is east.
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either increase in length or remain unaltered. All other
cases must involve dilatation according to these rules,
together with a coincident tectonic non-dilatational
deformation (Flinn 1978, p.298). Purely dilatational
deformations are limited to those for which
for d<1, X?/YZ<1/d; for d>1, XY/Z<d

and less precisely

for d<1, X<d and for d>1. Z<d.

For coaxial deformstion it is possible to combine a
dilatational deformation matrix and a tectonic deforma-
tion matrix by multiplication to obtain a combined
dilatational-tectonic deformation matrix since matrices
commute in multiplication for coaxial strain. However,
for non-coaxial deformation this is not true and
whichever matrix premultiplies the other must be
thought as a later superposed deformation. However, if
the ellipsoids representing the incremental dilatational
and incremental tectonic components are nearly coaxial
then the error may be small as in Fig. 5 of Flinn (1978).

Only for coaxial deformations can a dilatation
component and a tectonic component be combined by
matrix multiplication to give a dilatation-tectonic (or
non-constant volume) deformation. A dilatation-
tectonic deformation can only be resolved into a dilata-
tion and a tectonic component when the deformation is
coaxial, and then there are an infinite number of pairs of
dilatational and tectonic deformation ellipsoids which
combine to form the required resultant. For instance, a
spherical purely dilatational deformation, *D = nIwhere
nis a positive real number, could be the result of a non-
spherical dilatational deformation combined with a
purely tectonic deformation. Nevertheless the dilatation
ellipsoid is an essential concept in the study of
dilatational-tectonic deformations. The restriction of
dilatation to a pure compaction represented by a prolate
spheroidal ellipsoid or to an isotropic volume change
would be unnatural. It is unlikely that dilatation could
take place in a tectonite without being influenced by its
fabric.

NON-ORTHOGONAL NON-SYMMETRICAL
DEFORMATION MATRICES, "D

There is no relationship which may be used to simplify
and so to produce a unique, geologically significant,
solution to equation (5) for this type of matrix. There is
an infinite number of solutions for "D, for all of which
the homogeneous strain resulting from the use of "D as a
transformation matrix is of the type called rotational
because the axes of the deformation ellipsoid rotate
during the operation. Several solutions will be consi-
dered.

Simple shear, *D

sp=RSCRT (20)
1 0 2%k
where | *C=(0 1 O
0 01
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here *C in (20) has been chosen as the canonical form.
By a suitable choice of R the element 2* can be rotated
to any position occupied by O in (20), or it can be split to
replace two zero elements in any column or in any row,
or it can be distributed more widely. For all these cases
the deformation caused by *D is still classical simple
shear but in each case the shear elements are differently
oriented with respect to the reference axes.

If the shear plane is oblique to all three reference axes
there are no zeros in the deformation matrix and its
simple shear nature is not immediately recognisable.
However, its asymmetry makes obvious its rotational
nature. The presence of zeros shows that the shear plane
is parallel to one or two reference axes. Two off-
diagonal zeros in the ith column indicate that the shear
plane is parallel to the ith reference axis. In the canonical
form, equation (20), there are two such columns indi-
cating that the shear plane is parallel to the first and
second (or x, and x,) reference axes. The orientation of
the shear direction is indicated by the row in which a
non-zero element occurs. In the canonical form, equa-
tion (20), the non-zero element is in the first row so that
the shear direction is parallel to the first (or x,) reference
axis. Rotation of the simple shear system into a less
symmetrical orientation relative to the reference axes
reduces the number of zeros or changes their positions in
the matrix as displayed in Fig. 2.

It is sufficient to study the operation of the canonical
form

1 0-2k
#=CHT=C'=E =|: 010 :]=R M RT (21)
=2k 0 4k*+1
(RP+1)}+k)* 0 0
where M = l: 0 1 0 ]
0 0 ((+1)-k)?

((K+1)+k)?+1)4
0

—((K+D+k) ((KR+1)+k)?+1)7

The elements along the leading diagonal of M are the
eigenvalues and the columns of R are the eigenvectors of
sC obtained by the solution of its characteristic equa-

Ry

N I _ RN
L V==
: !

o T T TN
You! N e R
| (D=0~

: ;
. N SN

; -

] .

Stereo projection

)

o

o -
QO - O=+0 -~ O*0 =~ O
e ¥
S -
.
-~ &
B %
S
[l
S -
x =~ Qe B e O - >
=]

. ?/M plane
N /

" shear direction

o

o
{0 1 o

0 -s :‘J e}
(a) (b)

Fig. 2. Equivalent representations of simple shear. (a) Deformation

matrices. (b) Diagrammatic stereo-plots. f, =1 — ss' ¢’ k; f, = —s¢'?

kify=ss?k;f,=1+c s sk;c=cos8,s=sinbd, ¢’ =cosg,s' =sing,

¢’ = cos w, " = sin w. R, R,, R, - orthogonal matrices causing the
rotations indicated in (b).
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tion. From the eigenvalues the deformation ellipsoid
axes may be obtained,

X, Y, Z= (I3+1)+k, 1, (K+1)-k 22)
and the orientations of the ellipsoid axes are given by the
eigenvectors from which it may be seen that the X ellip-
soid axis is inclined at a to x, reference axis where

a = tan}((kK* + 1)t + k) = tan"'X. 23)
These results can all be obtained algebraically (Jaeger
1956, p.33). Since 2k = (X?~1)/X it is possible to express
*C in terms of the major ellipsoid axis

B! 0 (X2-1YX
sC = 0 1 0 (24)
Lo 0 1

or the angle a through which that axis has been sheared

1 0 (tan?a ~1)/tanc
8C = 0 1 0 .
L 0 0 1

The ellipsoid axes and the eigenvectors obtained above
can be substituted into (18) to obtain that symmetrical
deformation matrix, *D, which produces a deformation
ellipsoid identical to that produced by *C. Using
X2+ 0 X(xX*+1)? X0 O
R=[ 0 1 0 ]andM=[0 1 Ox]
=X(X? +1)t0 (X? +1)t 00V

CA+1YX(X2+1) 0 (X-DAX?+1)
D =[ 0 1 0 } . (25)
X-DAX2+1) 0 2XAX*+1)

Although the deformation matrices *Dfrom (25) and *C
from (20) deform a unit sphere into identical deforma-
tion ellipsoids with identical orientations the deforma-
tions giving rise to those two ellipsoids are very different,
one being irrotational and the other rotational, as may
be seen by comparing ‘D in (25) and *C in (24).
Progressive deformation by simple shear can be
studied by treating the deformation as a series of incre-

0 '((k2+1)*+k) (((P+ 1)+ k)2 +1)1 }
1 0
0 ((R+1)i+k)2+1)*

ments, each incremental deformation being given by
either equation (12), for lineations, or equation (11) for
poles of planes respectively. If each increment of the
deformation is identical to the preceding one then the
sum of n increments is given by

E = (D)D) ... (D)T(D™) ... (D) (D) =
(@-H1 D

1 0 2nk
and *C*= | 0 1 0
0 0 1

So that the substitution of nk for k in equations (21),
(22) and (23) above gives the shapes and orientations of
the deformation ellipsoids producing the deformation
up to and including the nth stage.

Figure 3 shows the deformation path and movement
paths for the resultant deformation ellipsoid for five
increments of simple shear deformation superimposed
on a sphere. From them it is clear that the simple shear



The deformation matrix and the deformation ellipsoid

deformation matrix caused both distortion and rotation
and thus can be said to rotate during the deformation.
Figure 3 also shows the deformation paths and move-
ment paths for simple sheax deformations imposed on

(1] [ oo [ 124 "2 it} 3 i) Eal

(b)
Fig. 3. (a) Equal-area projection. (b) Deformation matrix. Simple
shear of a sphere Ej. X*, Y%, Z4 in (a). Deformation path A in (b).
Simple shear of an ellipsoid E%. X?, Y?, Z®in (a) & inset. Deformation
path B in (b). Simple shear of an ellipsoid ES. XS, Y, Z% in (a).
Deformation path Cin (b). Starting eBlipsoids as in Fig. 1. Deformation

matrix — & — 5 increments.

101
DABC=1 0 1 O
6 0 1.

ellipsoids with axes parallel and oblique to the reference
axes at the start of the deformation.

Generalized simple shear, D

Simple shear is a very special type of deformation. It
may be generalised by allowing the sliding ‘layers’ to
deform during shearing. For example, if they extend by a
factor f parallel to the rotation axis, by a factor e parallel
to the sliding direction, and if the thickness changes by a
factor g then the canonical form becomes

e 0 2k
0 f 0
0 0 g

where e, f and g must all be positive for geological-type
deformations. In general, #D = R*CRYT. The dilation for
such a deformation is given by d = det #C = efg.
The deformation ellipsoid is given by
e 0 -deg
E=R(*CY)T®#C'RT= R[ 0 f2 0 J RT
~-d/eg® 0 (d*+e)*/eg?
Solution of the characteristic equation of the central
matrix on the right of (27) gives the eigenvalues as
2, ((g2+er+d?) = (g*+e2+d?)—4eg?)/2e%g?,
the ellipsoid axes being the reciprocals of the square
roots of the eigenvalues. The orientations of the ellip-
soid axes are given by the eigenvectors. However, there
seems little point in obtaining all these algebraic solu-
tions since they show no signs of simplifying. Numerical
solutions are easily obtained by computer methods
directly from the matrices without any algebraic expan-
sions. As with simple shear, deformation paths and
movement paths are obtainable by direct numerical
solution of the simple matrix equations (13), (12) and
(11), substituting matrix (26) for D.

Figure 4 shows the-drastic changes in deformation
paths and movement paths which arise from the
combination of pure shear in this way and with the max-
imum, intermediate and minimum axes of the pure shear
component taking up to six possible non-oblique

BC = (26)

27)
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orientations relative to the simple shear system.
Deformations of this type are probably of considerable
geological significance, especially in shear zones. Exten-

e>g e<yg —~

increments
o 5 oo w e @

=y
ol

50° 60°
(o)

30° a

X, X,
Fig. 4. Rotational deformation: generalised simple shear of a sphere
00 e

E, =[(1) (1) 0 :lDeformatlon matrix 4|:0 ? (1)

Fore =0 f=g= . 1, see deformation path S in (b) and graph Sin (a) —

identical to A in Fig. 1(b) and X4, Y2, Z4inFig. 1(a). For X=1.24, Y

=095Z2=085:(A)e=Y,f=Zg=X;(B)e=X,f=Z,g=Y;(C)

=Zf=Y,g=X,D)e=Xf=Y,g=Z;(E)e=Z,f=X,g=Y;

Fle=Y,f=Xg=2

sions parallel to the simple shear rotation axes gives rise

to s-tectonites while shortening in this direction gives
rise to [-tectonites.

Ramberg (1976) and Ramberg & Ghosh (1977) have
studied the movement paths of structural directions
during deformations of this type for the special case of
zero dilatation (d = abc = 1) and making use of rates of
deformation instead of increments.

The canonical form (26) above is not that for com-
pletely generalised simple shear because the deforma-
tion of the sliding ‘layers’ takes place with a special
orientation relative to the shear movements.

The completely generalised simple shear deformation
matrix is given by

&0 = R'®DR'T

0° 20°

Inb‘

5 increments.

(28)

where [€ea;; 412 a;;3
D = a; fan an
a3y Gy gas;

a3 G2 Gy 0 2
and ltaﬂ ay a23]= R|0O 1 O |R".
43 43 Qa3 01

Thus, #D’ in (28) causes a deformation of simple shear
type at any orientation, R, to the reference axes com-
bined with a coincident pure shear specified by factors
(ellipsoid axes) e, f, and g at any orientation, R’, to the
reference axes. The algebraic investigation of this type
of deformation is even less rewarding than it is for the
partially generalized form mentioned above. However,
for any numerically specified case #ID’ can be con-
structed with the aid of (28) and the deformation paths
and movement paths found as easily as for the simplest
deformations by use of the simple matrix equations (13),
(11) and (12).

Other types of rotational deformation

Deformation matrices for other types of rotational
deformation may be constructed by much the same
method that was used above for generalised simple
shear, and also in other ways.

For instance, the purely rotational strain caused by an
orthogonal deformation matrix, °D, may be made
distortional and rotational as follows:
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e 0 0
“D=R [0 fcosd  sin® :| RT
0 -—sin® gcos6
For the completely general case where

L, L 1 0 o0
‘D= (m, m, my =R’ [0 cosd sing |R'T

n M 0 -sinf cos6
el L A
D =R [ml fm, m; | RT. (29)
n n, 4L ]

For geologically significant deformations, e, fand gmust
be positive. The geometrical interpretation of the
deformation caused by (29) parallels that given above
for (28).

Irrotational strain caused by the symmetrical
deformation matrix, °D, can be made rotational as
follows:

D = R, ‘D R'.

Further rotational-type deformation matrices may be
constructed by combining different simple shear mat-
rices. The deformation caused by such matrices may be
called compound shear. Such deformation can be
thought of as resulting from the combination of different
systems of simple shear acting at the same time and com-
bining to produce a non-simple shear-type deformation.
However, combination of two simple shear systems with
the shear planes normal to each other and with both
shear directions parallel to the line of intersection of the
planes does not give rise to compound shear, merely to a
single resultant rotated simple shear system.

For example

10k 1k 0 1k k
010(&|010|—|010
001 001 001

which can be seen from Fig. 2 to be simple shear with the
shear plane oblique to two reference axes and the shear
direction parallel to the other. If two simple shear sys-
tems are combined so that the shear planes are parallel
but the shear directions are not, the resultant is again a

simple system (Fig 2);
10k 100 10k
l:O 1 0:|&|:0 1 k’]—»l:ﬂ 1 k’:|~
001 001 001
If two simple shear systems are combined so that both
shear directions are normal to the line of intersection of
the shear planes then the resultant matrix is either

symmetrical, and therefore produces irrotational strain,
or asymmetrical and produces generalised simple shear;

100 100 100 100
01 k|&|010|—>]|0 1 k|similar|0 f ¥}
001 k' ok 1] to Loo

On the other hand if the two shear planes intersect and
no more than one shear direction is normal or parallel to
the intersection then the resultant is compound shear. In
the simplest case

0k 100 10k
010|&{010f—{010
01 0 k'O 0k 1

D. FLINN

02 04 06 o8 10 t2 T4 16 18

(b)

P Inb

Fig. 5. (a) Equal-area projection. (b) Deformation matrix. Rotational
deformation: compound shear of a sphere,

100 1040
E, =} 0 1 0 |Deformation matrix, D = 0 1 0.5|— five incre-

001 00 1 ments.

1 k0 100 1 kO 10k
or{010{&|01Kk'|{—>|0 1Kk'|similarijO 1 O |
001 00 0014 to LOK

With both these deformation matrices, directions
parallel to the X axis remain unalitered in length and
orientation. All other directions change in length and
orientation (Fig. 5). This type of deformation matrix can
be generalised in much the same way that the simple
shear deformations matrix was generalised above.

Three simple shear systems may be combined
orthogonally to give matrices similar to

1 e O
[o : f}
g 01

These cause deformations involving a volume change;
det’D # 1. It is apparent that there is no limit to the
number of different types of deformation matrix which
may be constructed. Algebraic investigation of the
nature of these deformations, such as the determination
of the axes and their orientation for the deformation
ellipsoid and the equations defining the deformation
paths and the movement paths of structural directions by
the expansion of the simple matrix equations, serves
little purpose. The algebraic equations are not usually
amenable to simplification and reveal less about the
nature of the deformation than can be gained from a
study of the canonical form of the deformation matrix
and the numerical solution of the matrix equations.

Few if any of the types of rotational deformation men-
tioned above are immediately recognisable as of geolog-
ical interest, with the exception of simple shear. It seems
unlikely that simple shear is the only or even the
dominant type of rotational rock deformation. This
work reveals the multifarious nature of rotational
deformation and the need to identify those types which
occur naturally. It also shows that deformations of diffe-
rent type (i.e. not similar) can be combined as easily as
they can be applied sequentially.

DISCUSSION

It is possible to construct deformation matrices to pro-
duce innumerable different deformations, rotational
and otherwise. The shape, orientation and volume of the
deformation ellipsoid can be found for any deformation
matrix with the aid of equation (13), but a deformation
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ellipsoid is not unique to any deformation matrix and
cannot be used to characterise or represent the deforma-
tion unambiguously. For that, the deformation matrix is
required. If the deformation matrix is symmetrical or
orthogonal the nature of the deformation it causes is
obvious and may be quantified easily by means
described in the appropriate sections above. However, it
is much more difficult to determine the nature of the
deformation caused by any given deformation matrix
which is neither orthogonal nor symmetrical. Even a sys-
tematic study of the patterns of the movement paths
obtained from its operation, and a determination of its
deformation ellipsoid may not suffice to classify it suffi-
ciently precisely or allocate it to its canonical form. A
powerful method which may be used for the investiga-
tion of such matrices is to attempt to reduce them to
upper triangular form by means of the Q-R algorithm
(Hammarling 1970, pp. 138-46).

The deformation matrices for some of the more com-
plex types of deformation cannot be reduced to real
upper triangular forms. However, under the action of
the Q-R algorithm matrices similar to

1 0 kl[e O k] [1 O 0 e O 0
010p/0 f 0|0 cosé sin6|>|0 fcosd sin6 |
[0 0 L0 0 g —sinf cos 0 —sin® gcos
1 k O)fe k 0]

0 1KpPIO fk

10 0 110 0 gl
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converge on the canonical forms, often very rapidly.
However, it is necessary to monitor the convergence as
in some cases, after an initial close approach, the con-
vergence becomes a divergence.

Finally, it should be noted that although this paper has
been concerned solely with investigating the special case
of homogeneous strain operating without translation,
some of the methods developed may be suitable for use
in the study of more generalised forms of deformation. If
the elements in the deformation matrix are replaced by
suitable functions the deformation caused becomes
inhomogeneous strain, Furthermore, if the deformation
matrix is made into a 4 X 4 matrix it can perform opera-
tions involving translation as well as deformation.
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