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Abstract--Homogeneous strain can be computed most easily by the methods of matrix algebra. Lines, planes and 
ellipsoids represented in matrix form can be homogeneously deformed by simple matrix multiplication by linear 
transformation matrices, the elements of which are the coefficients of the transformation equations. Deformation 
matrices or linear transformation matrices which cause geological-type homogeneous strain are divided into four 
classes based on the presence or absence of symmetry and/or orthogonality. The nature of the homogeneous 
strain caused by each class of deformation matrix is examined. Orthogonal-symmetrical and orthogonal matrices 
cause rotation. Symmetrical matrices cause irrotational strain with co-axial strain as a special ease. Matrices 
which are neither orthogonal nor symmetrical cause many different types of rotational strain, some of which are 
examined. 

I N T R O D U C T I O N  

IN STRUCIZIRAL geology text-books the study of strain is 
often introduced by citing the linear t ransformat ion 
equations: 

X~ = a11X 1 + a12x2 + a l3x  3 

X~ ----- a21X 1 + a22x 2 "k a23x 3 (1 )  

X~ ---- a31X 1 + a32x2 + assX 3 

and then deriving f rom them a series of algebraic expres-  
sions defining the geomet ry  of deformat ion  (e.g. Jaeger  
1956). Presentat ion is often confined to two- 
dimensional  deformat ion  because the algebraic equa-  
tions become very cumbersome  for three-dimensional  
deformation.  

The  deformat ion  and its geomet ry  are much more  
easily studied when represented  in matrix form. The  
matrix algebra required may  be found in e lementary  
text -books  but  not presented in terms of three-  
dimensional  deformat ion  and lacking the necessary co- 
ordinate geometry.  

Equat ions  (1) are more  conveniently represented  in 
matrix fo rm as follows: 

x' = Ax (2) 
where x = (XlX2X3) r 

a n d A =  o~1 ~ o ~  3 . 
1 a32 123 

.4 is the linear t ransformat ion matrix when used in the 
relation (2) because it is then an opera to r  performing 
linear t ransformation.  

For geological-type deformat ion  the elements  of A 
must all be  real and A must  be  non-singular,  that  is det .4 
# 0. The  necessity for real e lements  for geological-type 
operat ions is obvious. If det At = 0 then the t ransforma-  
tion becomes  a project ion or mapping  of three dimen- 
sions onto  two-  or  even one-dimensional  space and no 
geological deformat ion  can take this form. In the rest of 
this pape r  D will be  a 3 x 3 real, non-singular linear 
t ransformat ion matrix and it will be  called the deforma-  

tion matrix. However ,  it will be shown that  not all such 
matrices give rise to geological-type deformation.  

H O M O G E N E O U S  S T R A I N  A N D  T H E  D E F O R -  
M A T I O N  M A T R I X  

In (2) if a given D is substi tuted for A and x'is set equal 
in turn to all unit vectors then x'  becomes  in turn all 
radius vectors of the form into which D transforms a 
sphere of unit radius. 

In matrix te rms this t ransformation is pe r fo rmed  as 
follows. Equat ion (2) is solved for x in terms of x': 

x - -  D ' l x  ' 
and substi tuted into the unit sphere 

xl 2+x2 2+x3 2= 1 (3) 

represented  by the identity matrix, ! -- 1 
0 

as follows: (D ' t )  r I D "1 (4) 
simplifying to ( D ' t )  r D "1 = 0 ,  (5) 

Q = s being the matrix representat ion of the 
w central quadric 

r ~  + sx~ + tx~ + 2 UXl X2 + 2 VXl X3 + 
2w x: x3 = 1. (6) 

The  same t ransformat ion can be pe r fo rmed  algebrai-  
cally. Equat ions  (1) are solved for  xin  terms of x '  giving: 

Xl = ahx~ + a h ~  + a~sz~ 

x 2 = a~lx 1 + a~2x ~ + a~sz ~ (7) 

x3 = a h x ;  + a ;2~  + a;sx~ 
where a'ij are l inear functions of aij. Equat ions  (7) are 
substi tuted in equat ion (3) to give: 

(a~IX ~ + U~2X; 2 + a;sx~) 2 + (a~ lx  ~ + o~2x ~ + o~3x~) 2 

+ (a;1x; + a;2x ~ + assx;) 2 = 1. (8)  

Equat ion  (8) can be  expanded and simplified to the form 
(6) obta ined before  

+ sx~ + t ~  + 2ux lx  2 + 2vxlx3 + 2WX~X 3 = 1 
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where r s - - w are all simple but lengthy function of a~j 
and therefore of a~j. 

Equation (6) is the standard form for all central quad- 
tics centred on the origin and is most conveniently rep- 
resented by the matrix O. The particular form of a 
central quadric is usually determined from its eigen- 
values. Here, a quicker method is available. The LHS of 
equation (8) is a sum of squares and is therefore positive 
for all real non-zero values of xl, xa and x3. Thus, Q in (5) 
is positive definite (it has three non-zero positive eigen- 
values) and therefore both Oand equation (6)represent 
an ellipsoid centred on the origin of the reference axes 
and completely specified by the elements of Q with 
respect to shape, volume and orientation relative to the 
reference axes, x 1, x 2 and x 3. In the rest of the paper such 
positive definite matrices will be called E. 

In (4) above, a sphere,/, was deformed to an ellipsoid. 
Any ellipsoid of any orientation may be deformed by 
substituting its matrix, E0, for I in (4) 

( D - l )  TE°D-1 ffi OR. (9) 
Again, Qa is a central quadric whose form, normally is 
most easily obtained from the eigenvalues. Here the 
determination may be done as before. It is clear that 
substitution of equations (7) into a sum of squares equa- 
tion (8) representing any ellipsoid leaves the sum of 
squares intact so that Qa in (9) is again positive definite 
and represents an ellipsoid. Thus 

(D'I)TEoD d -- Eg. (9a) 
In geological terms E 0 is the starting deformation 

ellipsoid, and Ea is the resultant deformation ellipsoid. 
The deformation ellipsoid, E ffi (Dq) T (D q) ffi 0 from 
(5), representing the deformation caused by D, is the 
incremental (or the superposed) deformation ellipsoid. 

The deformation matrix may be used to deform planes 
and fines as well as ellipsoids. The equation of a plane 
passing through the origin of the reference axes is given 
by 

/ x ~ + m x 2 +  n ~ =  0 (10) 
where !, m and n are the direction cosines of the normal 
of the plane. 

In algebraic terms the plane may be deformed by the 
substitution of (7) into (10) to give: 
l(ahx~ + ai2x ~ + ai3~) + m(a~lx i + a~2x ~ + a~3~) + 
FI(a31x ~ -{" a32x ~ + a33x~) ~-~ 0 
which simplifies to the standard form for a plane 
(lah + ?y~l + n4~l ) X1 + (/ai2 + rna~2 + na~2) x~ + (lai3 
+ + nab)x  = 0. 
Therefore, during deformations by D, planes remain 
planes and, furthermore, parallel planes remain parallel. 
In matrix terms this deformation takes the form 

PT = pToD-' (11) 
where P0 and Pl are the direction cosines and the direc- 
tion numbers respectively of the plane normal before 
and after the deformation. 

Straight lines are defined by the intersection of non- 
parallel planes, therefore, during deformation by D, 
straight lines remain straight lines and parallel fines 
remain parallel. In matrix terms the deformation of 
straight lines is given by 

Ix = D / 0  ( 1 2 )  

where /0 and/1 are the direction cosines and direction 
numbers respectively of the line before and after the 
deformation. The factor by which the fine has been elon- 
gated, e, is given by 

e 2 = I :  (13) 
Thus, the operation performed by the linear 

transformation matrix or deformation matrix, D, is 
homogeneous strain. However, there are many types of 
homogeneous strain which are not geologically possible 
even though they obey the usual rules that straight fines 
remain straight. It is the main purpose of this paper to 
identify and examine those deformation matrices which 
produce deformations which might occur geologically. 

Equations (11) and (12) can be used to compute a 
deformation in a single step, but if written in the form 

i~+1 = D~ P~+I = PTi D ' I  
can be used to compute a progressive deformation in a 
series of steps or increments. The successive solutions 
can then be used to plot the movement paths of the poles 
of the planes and lineations. Equation (9a) in the form 

(D71)T Ei/~{t - E~+l 
can be used to compute successive resultant deformation 
ellipsoids and thus plot the deformation path. 

An alternative approach is to construct a deformation 
matrix of deformation rates involving a factor t repre- 
senting time, allowing the deformation to be run for any 
desired period of time (Ramberg & Ghosh 1977). This 
method is limited to the computation of progressive 
deformations with deformation paths of constant k -  
value; the incremental deformation ellipsoid is 
invariant. 

Before giving further consideration to the deforma- 
tion matrix, it is necessary to define some terms. For 
each deformation matrix, D, there is a deformation 
ellipsoid, E, given by 

E = (D't) T D "I from (5) 
where E = R M R T 

[ r:° 1] and M = l/X~2 0 0 
L 0  0 

Note that 1/X~, 1 / ~  and 1 / ~  are the eigenvalues of E, 
and that R is a 3 x 3 orthogonal matrix the columns of 
which are the eigenvectors of E in the same order as the 
eigenvalues. Also, Xl, X2, and X 3 give the magnitudes of 
the three principal axes of the ellipsoid but not neces- 
sarily in any given order of magnitude, and the eigenvec- 
tors are the direction cosines defining the orientations of 
the respective axes. Alternatively, the principal axes of 
deformation ellipsoid may be called the major, inter- 
mediate and minor axes and defined as follows: 

X >  Y >  Z a n d  XYZ = V/V 0 -- d 
where V 0 and V are the volumes of the deformation 
ellipsoid before and after deformation by D. Thus, d is 
the dilatation factor. If the original sphere is defined as 
having unit volume then d is the volume of the deforma- 
tion ellipsoid as well as its dilatation factor. However, it 
is usually more convenient to define the original sphere 
as having unit radius, in which case the volume of the 
ellipsoid is given by 
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V = ~rd  = ~'rr(det E) -1/2 = ~.ff det D. 
These  relations depend on 

det E = 1/(x2y2z 2) & det E -- det ( ( D I ) T D  "1) 
ffi 1/(det D)  2. 

In this pape r  the original sphere is defined as having unit 
radius. 

Al though every deformat ion matrix, D, has 
associated with it one particular deformat ion  ellipsoid E, 
given by (13), nevertheless that  deformat ion  matr ix  is 
not unique to that  deformat ion  ellipsoid. For  this reason 
any classification of deformat ions  must  be  based on the 
deformat ion  matrix and not on either the deformat ion  
ellipsoid or  on  any or all of its parameters .  

Deformat ion  matrices may  be divided into the fol- 
lowing four main classes based on the fact that  such 
matrices may  be either symmetrical  or  nonsymmetrical ,  
and independent ly  of this they may  be or thogonal  or 
non-orthogonal :  or thogonal-symmetr ica l ,  or tho-  
gonal -non-symmetr ica l ,  symmetr ica l -non-or thogonal  
and non-or thogonal -non-symmetr ica l .  I t  should be 
noted that  a rigid body  rotat ion of D relative to the refer-  
ence axes, that  is an or thogonal  similarity t ransform of 
the type 

D '  ffi R D R  T 

where R is any or thogonal  matrix, can change nei ther  
the state of symmet ry  nor  the state of or thogonali ty of D. 
Therefore ,  this classification of deformat ion  matr ices is 
invariant under  a change of base  or  a rigid body  rotation. 
In the above  cited relationship D '  is said to be  s imi lar  to 
D. The  word  's imilar '  wherever  used below, has this 
meaning.  

The  systems of co-ordinate  axes, xl, x2, x3 employed  
by  mathemat ic ians  are usually, but  not  invariably, right- 
handed.  However ,  the geological system involving a 
clockwise graduated compass  rose and a positive zenith 
direction is lef t-handed.  Since the analytical geomet ry  
used in this pape r  m a y  be expressed in ei ther  right- or  
lef t -handed terms the lat ter  has been  employed  as being 
more  geological. 

ORTHOGONAI.-SYMMETRICAL DEFOR- 
MATION MATRICES, aD 

Symmetrical  matrices have the fo rm 

b • 
I 

Orthogonal  matrices are those in which the sum of 
squares of the three  e lements  in each column and in each 
row are equal  to unity. Each  row and each column may  
therefore  be  t rea ted  as direction cosines. The  three  rows 
fo rm a mutual ly or thogonal  set of directions as do the 
three columns. Most  of the proper t ies  of or thogonal  
matrices are discussed more  conveniently in the next 
section. This section is concerned with or thogonal  ma t -  
rices which are also symmetrical.  For  or thogonal-  
symmetrical  matr ices 

OSD'l = OSDT --__ os D 

therefore  (5) simplifies to 
(°SDq)T ° ~ D  "1 = °SD2 f f i  E ffi R M R  r = I 

so that  
°SD--  E 1/2 = R t ~ I / 2 R T - ~  11 /2  . (14) 

M 1/2 is a diagonal matrix and since it is similar to the 
or thogonal  matrix °SD it must  also be  orthogonal.  Thus, 
the e lements  along the leading diagonal must be -+ 1o If  
the special case of R = / i s  considered then there are four 
different solutions to (14) given by the following sets of 
e lements  forming the leading diagonal in unspecified 
order: +1,  +1 ,  + l ; - 1 , - 1 ,  + l ; - 1 ,  +1,  + 1 ; - 1 , - 1 , - 1 .  T h e  
first solution is the identity matrix which when serving as 
a deformat ion  matrix gives rise to zero deformation.  The  
solutions with one positive and two negative unit roots 
cause rotations of 180 ° (and no change of length) about  
the reference axis association with the positive root.  The  
solutions with a single negative root  and two positive 
ones cause a reflection across the plane normal  to the 
reference axis associated with the negative root.  I t  may 
be noted that  in the solution with two negative roots 
ment ioned  above two such reflections occur, but two 
reflections across or thogonal  planes are exactly equiva- 
lent to a rota t ion of 180 ° about  the line of intersection of 
the planes. The  solution with three  negative roots  causes 
three or thogonal  reflections which is equivalent to an 
inversion across the origin of the reference axes. 

The  deformat ion  matrices involving 1 or  3 reflections, 
that  is those for which det°SD = -1 ,  do not cause 
geological-type deformations.  Those for which d e t ~ D  ffi 
+ 1, cause no deformat ion  or a rotat ion of 180 ° without 
change of length since all or thogonal-symmetr ical  
deformat ion  matrices are associated with unit radius 
spheres I as deformat ion  ellipsoids. 

In relation (14) if R is any or thogonal  matrix then the 
same interpretat ions apply except  that  the" axial. 
directions are no longer parallel to a reference axis but t O  
a direction defined by one of the columns of R t reated as 
direction cosines. Thus,  when d e t ~ D  -- + 1 the eigen- 
vector  associated with the single positive root  fixes the 
att i tude relative to the reference axes of the axis about  
which the 180 ° rotat ion takes place. A deformat ion  
matrix whose opera t ion is 180 ° rotat ion about  an axis at 
any desired inclination to the reference axes may  be con- 
structed by substituting into (14) a suitably chosen R. 
All such matrices will be  both  or thogonal  and symmet-  
rical. 

ORTHOGONAL NON-SYMMETRICAL DEFOR- 
MATION MATRICES, ° D  

For  or thogonal  matrices °D-1 = ° D r  

so that  equat ion (5) simplifies to 
(D-l)  T D  "1 = °D°DT = E ffi R M R  r ffi I .  (15) 

Taking first the case where R -- I so that 
ODODr = 11/2 (I1/2) r 

there are two solutions, as follows, for every value of O 
f rom 0 to 2-# 

I:  o 01 °D = cos e sin . (16) 
--sin 0 cos 

The  eigenvalues of  these two solutions and of all or tho-  
gonal non-symmetr ical  matrices are _ 1, cos e _is in 8. 
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Therefore ,  det °D ffi - 1 for all or thogonal  matrices. The 
operat ion performed by all orthogonal  matrices is rota- 
tion if the real root  is + 1 and rotation together  with 
reflection across the plane normal to the rotat ion axis if 
the real root  i s -1 .  Therefore ,  only deformation matrices 
with det °D = + 1 cause geological-type deformation. 
For  (15) it is clear that the deformation ellipsoid is a 
sphere of unit radius so that no change of length accom- 
parties the rotations. 

The operat ion performed by °D [(16) and above] 
when det °D = + 1 is a rotation of 0 ° clockwise about the 
x z reference axis considered from the positive end of the 
axis looking towards the origin (Flinn 1979, pp. 90-93,  
Figs. 2 & 3). 
By means of a suitably chosen R in 

o D ,  -_ RODR r 

the rotation axis may be given any desired orientation 
because the rotat ion caused by °/7 takes place about  the 
direction defined by the column of R associated with the 
real unit root  [the first column for °D as in (16)], and the 
rotat ion is 0 ° where the complex roots are cos 0 --- isin 0. 
Alternatively the direction cosines of the rotat ion axis 
a r e  

(I m n) r = ( a 2 3 - - a 3 2  a31-ax3 a12--a21) r 

ral  a12 a,3-] 

a31 a32 a33 
and the angle of rotat ion 0 is 

c o s0  f f i ½ ( t r ° D - 1 )  f ½ ( a l l  + a2 2 +  0.3 3 - 1 ) .  
°1) may be used to rotate directions/0 to it by means of 
(12), that is 

I s ffi o D ! o. 

The  columns of °D are the new direction cosines of the 
directions which before the deformation were parallel to 
the reference axes, while the rows of °D are the direction 
cosines before the deformation,  of directions which are 
parallel to the reference axis after the deformation. The 
operat ion is a rigid body rotation since the angle be- 
tween any two directions is the same before and after  the 
rotation. 

All orthogonal deformation matrices with positive 
unit determinant  may be used to perform rigid body 
rotations on other  deformation matrices, orthogonal or 
otherwise, and on ellipsoids by means of orthogonal  
similarity transformations as follows: 

DR = °DIDo°D~ 
E~ = °O, Eo°O T. 

The matrix R used throughout  this paper  is an ortho-  
gonal matrix of type det(°D) = + 1. The symbol R is 
used instead of °D when the matrix is constructed with 
eigenvectors to be used to set the orientat ion of another  
matrix rather  than to 'deform'  it. There  is no 
mathematical difference, only one of geological 
interpretation. 

A sequence of rotations °D1, °1)2, °D 3 etc. can be com- 
bined as follows: 

OD R - -  OD3 ° V  2 ° I )  5 

provided the rotations took place in the order  I,  2, 3. In 
general, a different resultant matrix, °D a, and therefore 
a different resultant deformation would be obtained if 

they were multiplied together in a different order. 
Orthogonal  deformation matrices can be multiplied 
together  in any order  only when they have parallel rota- 
tion axes. 

SYMMETRICAL ( N O N - O R T H O G O N A L )  
MATRICES,  rid 

For symmetrical matrices ' D  = ' D  r so that equation 
(5) simplifies to 

( D q ) r D - 1  = S D - l S D - 1  = E = R / I , I ~  r (17) 
where M is a diagonal matrix in which not all the 
diagonal elements are unity and in most cases none are. 
It follows that 

' D  -- R (M 1/2) - IRr  (18) 

0 1 
0 ---x3 

X 1, X 2 and X 3 being the principal axes of the deforma- 
tion ellipsoid, E i n  (17). If R = f i n  (18) then the opera- 
tion performed by 'D  in (19) 

1~ = 'D/o (19) 
is a change of length of a direction parallel to the x refer- 
ence axis by a factor ---X~, of a direction parallel to the x2 
reference axis by a factor -X2 ,  and of a direction parallel 
to the x 3 reference axis by a factor -X3 ,  all without a 
change of orientation. All other  directions suffer a 
change of length by some intermediate factor together 
with a change of orientation. A negative factor causes a 
change of length together with a reflection across the 
plane normal to the axis associated with the factor. 
Therefore ,  only positive definite symmetrical deforma- 
tion matrices are of geological significance. If det ' D  is 
negative there are either one or three negative factors 
(eigenvalues) and if the determinant  is positive but the 
matrix is not positive definite there are two negative fac- 
tors (eigenvalues) all associated with reflections. 

If ' D  has three positive eigenvalues, that is ' D  is posi- 
tive definite, then its operat ion is pure shear or three- 
dimensional irrotational strain. If R -- f i n  (17) and (18) 
then the three irrotational directions, the axes of the 
deformation ellipsoid, are parallel to the reference axes. 
They  can be set at any desired angles to the reference 
axes by constructing R in (17) and (18) with the direc- 
tion cosines of the required directions forming the col- 
umns of R in the required order. In any given ' D  the 
eigenvalues specify the magnitudes of the deformation 
ellipsoid axes and the eigenvectors their orientations. 

A deformation matrix "D = R (M~/2) - lRrcan  be set to 
operate at any desired attitude to the reference axes, 
specified by R~, as follows 

SD -- RI  R r ' D R  Rrx • 
A deformation matrix SD can be used to deform an ellip- 
soid 

E R = s o - I E o S O  -1 ~. J~ffl 2 F__,oE1 if2 

where 
E 1/2 = ( R  M R  7) 1/2 __ R M1/2RT 

When 'D1 is used to deform an ellipsoid, E0, into a resul- 
tant ellipsoid, ER, the axes of the deformed ellipsoid 
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rotate  continuously from its starting atti tude to its resul- 
tant attitude. In general, it is only the ellipsoid axes of 
the imposed or incremental deformation ellipsoid, Ez 
which remain stationary during irrotational strain. In the 
special case in which the ellipsoid axes for both the orig- 
inal and the superposed deformations are parallel but 
not necessarily largest to largest etc. both sets of axes 
remain stationary during the deformation which is then 
called co-axial. If E0 ffi RM0 RTand SD = RMI RTthen  

E R ffi R M t l  R T R M 0 R T R M t l  R T 

= RMR R T. 
The deformation path for a co-axial deformation and 

the lack of rotat ion of the resultant ellipsoid axes during 
the deformation are shown in Fig. I. If the original ellip- 
soid E0 is rotated so that its axes are no longer parallel to 
those of SD and the same deformation superposed the 
resultant ellipsoid E R rotates during the deformation 
(Fig. 1). The  behaviour  of the deformat ion ellipsoid 
itself during the deformation can be moni tored by 
applying the same deformation to a sphere, E0 = I. 
Figure I shows that the axes of the deformation ellipsoid 
remain stationary during the deformation.  

Deformat ion matrices, 'D  I, can be combinecl by 
multiplication but  such multiplications are commutative 
only for coaxial deformation. In non-coaxial deforma- 
tions deformat ion matrices must be multiplied together  
in the order  in which the deformations occur, that is if 
the order  is 1, 2, 3, then 

13 = sV3SD2SD,  lo = SOlo • 

In general det ~D -- d ~ 1 and the operat ion per- 
formed by ' D  involves dilatation. It is convenient to 
define dilatation as a change in dimensions dependent  
only on volume change so that for d<  1, X, Y, Zdecrease  
in length or remain unaltered and for d > l ,  X, Y, Z 

~2 

\ ' ,  1.4 

AB in a,] 

0"6 

0 4  

( o )  01 

~ B 

2 3 • 

0"2 04  O~ O'6 i ~  ~'2 I-4 I~ 

Inb (b) 
Fig. 1. (a) Equal-area projection. (b) Deformation plot. Coaxial 
deformation of a sphere E~. X ^, Y/~, Z ^ in (a). Deformation path A in 
(b), Coaxial deformation of an ellipsoid ESo . X v, ye ,  Z s in (a). 
Deformat ion path B in (b). Irrotational non-coaxial deformation of an 

elhpsoid E~0. X c, yc,  Zc  in (a). Deformation path C in (b). 

Starting dl ipsoid ~ [] ,  E~ ffi 1 , 
0 

[0"Oo38 0 ° l F0.84 -0-13 -0.72l  
E~ ffi 1.21 0 , E c = I-0.13 1.38 0.36 / 

0 2.171 L-0.72 0.36 1.551 
Deformat ion  matrix m b - -  5 increments, ['o' o oo] D "*'s'c ,= 0.98 

0 0.7 
N.B. In Figs. 1-5 the reference axes plot as +x~ ~ centre, +x :  - -  top, 
+x3 - r.h.s, of the projection,  i.e. xl is zenith, x 2 is north and x3 is east. 

either increase in length or remain unaltered. All other  
cases must involve dilatation according to these rules, 
together with a coincident tectonic non-dilatational 
deformation (Flinn 1978, p.298). Purely dilatational 
deformations are limited to those for which 

for d < l ,  X2/YZ<I/d; for d > l ,  XY/Z<d  
and less precisely 

for d < l ,  X<d and for d > l .  Z<d. 
For  coaxial deformr,don it is possible to combine a 

dilatational deformation matrix and a tectonic deforma- 
tion matrix by multiplication to obtain a combined 
dilatational-tectonic deformation matrix since matrices 
commute in multiplication for coaxial strain. However ,  
for  non-coaxial deformation this is not true and 
whichever matrix premultiplies the other  must be 
thought as a later superposed deformation. However ,  if 
the ellipsoids representing the incremental dilatational 
and incremental tectonic components  are nearly coaxial 
then the error  may be small as in Fig. 5 of Flinn (1978). 

Only for coaxial deformations can a dilatation 
component  and a tectonic component  be combined by 
matrix multiplication to give a dilatation-tectonic (or 
non-constant  volume) deformation.  A dilatation- 
tectonic deformation can only be resolved into a dilata- 
t ion and a tectonic component  when the deformation is 
coaxial, and then there are an infinite number  of pairs of 
dilatational and tectonic deformation ellipsoids which 
combine to form the required resultant. For  instance, a 
spherical purely dilatational deformation,  ' D  = n /where  
n is a positive real number,  could be the result of a non- 
spherical dilatational deformation combined with a 
purely tectonic deformation.  Nevertheless the dilatation 
ellipsoid is an essential concept in the study of 
dilatational-tectonic deformations.  The  restriction of 
dilatation to a pure compaction represented by a prolate 
spheroidal ellipsoid or to an isotropic volume change 
would be unnatural. It is unlikely that dilatation could 
take place in a tectonite without being influenced by its 
fabric. 

N O N - O R T H O G O N A L  N O N - S Y M M E T R I C A L  

D E F O R M A T I O N  M A T R I C E S ,  " D  

There is no relationship which may be used to simpli~ 
and so to produce a unique, geologically significant, 
solution to equation (5) for this type of matrix. There is 
an infinite number of solutions for "D, for all of which 
the homogeneous strain resulting from the use of "D as a 
transformation matrix is of the type called rotational 
because the axes of the deformation ellipsoid rotate 
during the operation. Several solutions will be consi- 
dered. 

Simple shear, "D 

where 

" D  --  R '~C R T ( 2 0 )  

" C =  1 
0 1 1  
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here ~'C in (20) has been chosen as the c a n o n i c a l  form. 
By a suitable choice of R the element 2 k can be rotated 
to any position occupied by 0 in (20), or it can be sprit to 
replace two zero elements in any column or in any row, 
or it can be distributed more widely. For all these cases 
the deformation caused by ~'D is still classical simple 
shear but in each case the shear elements are differently 
oriented with respect to the reference axes. 

If the shear plane is oblique to all three reference axes 
there are no zeros in the deformation matrix and its 
simple shear nature is not immediately r eco~ i~b le .  
However, its asymmetry makes obvious its rotational 
nature. The presence of zeros shows that the shear plane 
is parallel to one or two reference axes. Two off- 
diagonal zeros in the ith column indicate that the shear 
plane is parallel to the ith reference axis. In the canonical 
form, equation (20), there are two such columns indi- 
cating that the shear plane is parallel to the first and 
second (or xl and xz) reference axes. The orientation of 
the shear direction is indicated by the row in which a 
non-zero element occurs. In the canonical form, equa- 
tion (20), the non-zero element is in the first row so that 
the shear direction is parallel to the first (or xl) reference 
axis. Rotation of the simple shear system into a less 
symmetrical orientation relative to the reference axes 
reduces the number of zeros or changes their positions in 
the matrix as displayed in Fig. 2. 

It is sufficient to study the operation of the canonical 
form 

0-2  
(='C-~)TuC '' = E = |  0 1 0 [ = R M R  r (21) 

L-2k 0 4 / 0 + 1 3  

where M = [ ((/0+ 1)*+k) 2 0 0 ] 
0 1 
o o ((/0+l)Lk) 2 

andR= I (((/0+1)i+k)2+1)-J0 
- ( ( / 0  + 1)t+ k) (((/0 + 1)LI - k) 2 + I )  -i 

The elements along the leading diagonal of M are the 
eigenvalues and the columns of R are the eigenvectors of 
~'C obtained by the solution of its characteristic equa- 

I: ot Io o I: ![ 
t O k 1 %k T 

o o ~ 

cw ~ s'c~ 

t, f, - ~  

f ,.oo iio l 1 ~ 0 ~ *s 'Crk  C"W ~ I 

0 0 -s ' :k  1-n,c~ 

J e R R y - -  

S t e c e o  I ~O leCt  iorz 

Re= R. = c R,, = I ~ -~ jL~_a.,, = 
_ (~ dj o d ~ t ~  

(o) (b) 

Fig. 2. Equivalent representations of simple shear. (a) Deformation 
matrices. (b) Diagrsmmntic stereo-plots,  f l  = 1 - s s '  c '  k ;  f2 ffi - s  c '2 
k;  f3 = s s '2 k;  f4 = 1 + c '  s '  s k ;  c = c o s  O, s ffi s in  O, c '  ~ c o s  ~ ,  s '  = sinla, 
d'  = cos oJ, s "  ffi sin ,,~. Re, Re, R .  - orthogonal matrices causing the 

rotations indicated in (b). 

tion. From the eigenvalues the deformation ellipsoid 
axes may be obtained, 

X, Y, Z ffi ( / 0+ l ) t+k ,  1, (/0+1)*-k (22) 
and the orientations of the ellipsoid axes are given by the 
eigenvectors from which it may be seen that the Xellip- 
soid axis is inclined at ot to x3 reference axis where 

a ffi tan-l((/0 + 1) t + k) = tan-iX. (23) 
These results can all be obtained algebraically (Jaeger 
1956, p.33). Since 2k ffi (X2-1)/Xit is possible to express 
=C in terms of the major ellipsoid axis 

" C  -- 1 (24) 
0 1 A 

or the angle a through which that axis has been sheared 

u C =  I !  01 (tan2ct O1)/tana 1 • 

0 1 3 
The ellipsoid axes and the eigenvectors obtained above 
can be substituted into (18) to obtain that symmetrical 
deformation matrix, 'D, which produces a deformation 
ellipsoid identical to that produced by "C. Using 

R F ( X e ;  1)4 0 X(X~+I)4-] I - X 0  0X~ 
= 1 o / a n d M - | 0  1 

L - x ( x  ~ +1) -~ 0 (X ~ +1)4A L0 0 1/ 

SD =I(X3+I)IoX(Xe+I)  0 ( X 2 - 1 ) / 0 ( X 2 + 1 ) I 1  • (25) 

L (x2-1)/(X2+1) 0 2x x2+1) d 

Although the deformation matrices 'Dfrom (25) and #C 
from (20) deform a unit sphere into identical deforma- 
tion ellipsoids with identical orientations the deforma- 
tions giving rise to those two ellipsoids are very different, 
one being irrotational and the other rotational, as may 
be seen by comparing *D in (25) and ~'C in (24). 

Progressive deformation by simple shear can be 
studied by treating the deformation as a series of incre- 

0 
1 
0 

'((/0+l)i+k) (((/0+1)t+k)2+1)-10 ] 
(((~ + 1)i+ k)2+ 1)-i 

ments, each incremental deformation being given by 
either equation (12), for lineations, or equation (11) for 
poles of planes respectively. If each increment of the 
deformation is identical to the preceding one then the 
sum of n increments is given by 

E ffi (O-qT(D-D ... (O-q (D -1) ... ( o - q  ( o - ' )  = 
[(D-1)q"[D-'p 

[ 1  0 2 n k ]  
and uC" ffi 0 1 0 

0 0 1 

So that the substitution of nk for k in equations (21), 
(22) and (23) above gives the shapes and orientations of 
the deformation ellipsoids producing the deformation 
up to and including the nth stage. 

Figure 3 shows the deformation path and movement 
paths for the resultant deformation ellipsoid for five 
increments of simple shear deformation superimposed 
on a sphere. From them it is clear that the simple shear 
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deformation matrix caused both distortion and rotation 
and thus can be said to rotate during the deformation. 
Figure 3 also shows the deformation paths and move- 
ment paths for simple shear deformations imposed on 

z ~"~zL'--~z2' xb/. ~- x:, /I 

yoA£ e (o) 

i.e 

In a 

).A 

0~ o~ o~ oe ~ ,1 t~ ~ ~ ~0 

(b) 
Fig. 3. (a) Equal-area projection. (b) Deformation matrix. Simple 
shear of a sphere E~. X A, yA, ZA in (a). Deformation path A in (b). 
Simple shear of an ellipsoid E~o. X e, ya, Z s in (a) & inset. Deformation 
path B in (b). Simple shear of an ellipsoid E~,. X c, y c  Z c in (a). 
Deformation path Cin (b). Starting ellipsoids as in Fig. 1. Deformation 

matrix - & - 5 increments. [ 01] 
D x ~ c  ffi 1 0 

0 1 

ellipsoids with axes parallel and oblique to the reference 
axes at the start of the deformation. 

Generalized simple shear, PD 

Simple shear is a very special type of deformation. It 
may be generalised by allowing the sliding 'layers' to 
deform during shearing. For example, if they extend by a 
factor f parallel to the rotation axis, by a factor e parallel 
to the sliding direction, and if the thickness changes by a 
factor g then the canonical form becomes 

[i 0 ~C - f (26) 
0 g J  

where e, f and g must all be positive for geological-type 
deformations. In general, =D = It~CR T. The dilation for 
such a deformation is given by d = det PC = efg. 
The deformation ellipsoid is given by (27) 

~ e-2 0 0--d/e2g ] 
E = R(gsC"I)TgsC'IR T-- RIo f-2 RT 

L-d/eg 2 0 (d2+e)2/e2g2_J 
Solution of the characteristic equation of the central 
matrix on the right of (27) gives the eigenvalues as 

f-2, ( ( g2 + e2 + d2) ± ( g2 + e2 + d2)2..4e2 92)/2 e2 92 ' 
the ellipsoid axes being the reciprocals of the square 
roots of the eigenvalues. The orientations of the ellip- 
soid axes are given by the eigenvectors. However, there 
seems little point in obtaining all these algebraic solu- 
tions since they show no signs of simplifying. Numerical 
solutions are easily obtained by computer methods 
directly from the matrices without any algebraic expan- 
sions. As with simple shear, deformation paths and 
movement paths are obtainable by direct numerical 
solution of the simple matrix equations (13), (12) and 
(11), substituting matrix (26) for D. 

Figure 4 shows th~drastic changes in deformation 
paths and movement paths which arise from the 
combination of pure shear in this way and with the max- 
imum, intermediate and minimum axes of the pure shear 
component taking up to six possible non-oblique 

orientations relative to the simple shear system. 
Deformations of this type are probably of considerable 
geological significance, especially in shear zones. Exten- 

e>g  e~ g ~ ~ f <1  

o.~ ~E A c  3[ IAmBs. ~ ..... 
,o S "\ 

'°°1/// 

0 10 20 30 40 50 600 0 

X^x 1 (o) In b (v)  

Fig. 4. Rotational deformation: generalised simple shear of  a sphere 

E o ffi 1 Deformation matrix 5 increments. 
0 

For  e = f ffi g = 1, see deformation path S in (b) and graph S in (a) 
identical to A in Fig. 1 (b) and X '~, yA, Z A in Fig. 1 (a). For X ffi 1.24, Y 
ffi 0.95, Z ffi 0.85: (A) • ffi Y, f ffi Z, g ffi X; (B) e = X, f - -  Z, g ffi Y; (C) 
effi Z, fffi Y, g f  X;(D)e-- X,f= Y,g= Z;(E) effi Z, f= X, g f  Y; 

(F) effi Y, f f  x, g= z. 
sions parallel to the simple shear rotation axes gives rise 
to s-tectonites w ~ e  shortening in this direction gives 
rise to/-tectonites. 

Ramberg (1976) and Ramberg & Ghosh (1977) have 
studied the movement paths of structural directions 
during deformations of this type for the special case of 
zero dilatation (d ffi abe ffi 1) and making use of rates of 
deformation instead of increments. 

The canonical form (26) above is not that for com- 
pletely generalised simple shear because the deforma- 
tion of the sliding 'layers' takes place with a special 
orientation relative to the shear movements. 

The completely generalised simple shear deformation 
matrix is given by 

gs D '  = R ' ~ D R ' T  

l w h e r e  [-eall a12 a13 3 1 
gsD f l  a21 fa22 0.23 

L a 3 1  0.32 ga33J 

andFall  at2 a137 ~ 0 2 ~  [ . ,  o= .:j= s 1 0 R r • 

0.31 a32 a 3 0 l J  

(28) 

Thus, ~D' in (28) causes a deformation of simple shear 
type at any orientation, R, to the reference axes com- 
bined with a coincident pure shear specified by factors 
(ellipsoid axes) e, f, and g at any orientation, R', to the 
reference axes. The algebraic investigation of this type 
of deformation is even less rewarding than it is for the 
partially generalized form mentioned above. However, 
for any numerically specified case ~D' can be con- 
structed with the aid of (28) and the deformation paths 
and movement paths found as easily as for the simplest 
deformations by use of the simple matrix equations (13), 
(11) and (12). 

Other types of rotational deformation 

Deformation matrices for other types of rotational 
deformation may be constructed by much the same 
method that was used above for generalised simple 
shear, and also in other ways. 

For instance, the purely rotational strain caused by an 
orthogonal deformation matrix, °D, may be made 
distortional and rotational as follows: 
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I li ° ] 8°D ffi R fcos0 sin0 R T 
-sin0 gcos01 

For the completely general case where 

[i 0 01 ° D r  m 1 rn2 = R '  cos0 sin0 R'T 
n I n 2 - S i n 0  c o s 0 J  

S°D = R |ml fro2 R r .  (29) 
n z r ~  

For geologically significant deformations, e, f and g must 
be positive. The geometrical interpretation of the 
deformation caused by (29) parallels that given above 
for (28). 

Irrotational strain caused by the symmetrical 
deformation matrix, 'D, can be made rotational as 
follows: 

' D  -- R 2 'D  S T. 

Further rotational-type deformation matrices may be 
constructed by combining different simple shear mat- 
rices. The deformation caused by such matrices may be 
called compound shear. Such deformation can be 
thought of as resulting from the combination of different 
systems of simple shear acting at the same time and com- 
bining to proktuce a non-simple shear-type deformation. 
However, combination of two simple shear systems with 
the shear planes normal to each other and with both 
shear directions parallel to the line of intersection of the 
planes does not give rise to compound shear, merely to a 
single resultant rotated simple shear system. 
For example 

which can be seen from Fig. 2 to be simple shear with the 
shear plane oblique to two reference axes and the shear 
direction parallel to the other. If two simple shear sys- 
tems are combined so that the shear planes are parallel 
hut the shear directions are not, the resultant is again a 
simple system (Fig 2); 

1 & 1 -'* 1 o 
0 0 0 

If two simple shear systems are combined so that both 
shear directions are normal to the line of intersection of 
the shear planes then the resultant matrix is either 
symmetrical, and therefore produces irrotational strain, 
or asymmetrical and produces generalised simple shear; 

{ 0 i] ~ 0 ~ [ i  0 ] 0  rO i ~ 1  1 & 1 -* 1 k similar • 
0 k' k' l_J to LO 

On the other hand if the two shear planes intersect and 
no more than one shear direction is normal or parallel to 
the intersection then the resultant is compound shear. In 
the simplest case 

1 & 1 ~ i 
0 k' k' 

/ X, s " \ ,  

/ 

'-_ .... (el Inb (hi 

Fig. 5. (a) Equal-area projection. (b) Deformation matrix. Rotational 
d e f o r m a t i o n :  c o m p o u n d  s h e a r  o f  a s p h e r e ,  

E o = i D e f o r m a t i o n  m a t r i x ,  D 1 . - -  f ive i n c r e -  
0 0 rnen t s .  

'~ In 

o:z o~  ms c~s i o  r~ i ,  16 i s  

[i i] Ei0  1 Fl00  or 1 & I --* 1 k similar 0 1 • 
0 0 0 11 to L0 k' 

With both these deformation matrices, directions 
parallel to the X axis remain unaltered in length and 
orientation. All other directions change in length and 
orientation (Fig. 5). This type of deformation matrix can 
be generalised in much the same way that the simple 
shear deformations matrix was generalised above. 

Three simple shear systems may be combined 
orthogonaIIy to give matrices similar to 

1 • 
0 

These cause deformations involving a volume change; 
detCD ~ 1. It is apparent that there is no limit to the 
number of different types of deformation matrix which 
may be constructed. Algebraic investigation of the 
nature of these deformations, such as the determination 
of the axes and their orientation for the deformation 
ellipsoid and the equations defining the deformation 
paths and the movement paths of structural directions by 
the expansion of the simple matrix equations, serves 
little purpose. The algebraic equations are not usually 
amenable to simplification and reveal less about the 
nature of the deformation than can be gained from a 
study of the canonical form of the deformation matrix 
and the numerical solution of the matrix equations. 

Few if any of the types of rotational deformation men- 
tioned above are immediately recognisable as of geolog- 
ical interest, with the exception of simple shear. It seems 
unlikely that simple shear is the only or even the 
dominant type of rotational rock deformation. This 
work reveals the multifarious nature of rotational 
deformation and the need to identify those types which 
occur naturally. It also shows that deformations of diffe- 
rent type (i.e. not similar) can be combined as easily as 
they can be applied sequentially. 

D I S C U S S I O N  

It is possible to construct deformation matrices to pro- 
duce innumerable different deformations, rotational 
and otherwise. The shape, orientation and volume of the 
deformation ellipsoid can be found for any deformation 
matrix with the aid of equation (13), but a deformation 
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ellipsoid is not unique to any deformat ion  matrix and 
cannot  be used to characterise or  represent  the deforma-  
tion unambiguously.  For  that,  the deformat ion  matrix is 
required. If the deformat ion  matrix is symmetrical  or 
or thogonal  the nature  of the deformat ion  it causes is 
obvious and may be quantified easily by means  
described in the appropr ia te  sections above.  However ,  it 
is much more  difficult to de termine  the nature  of the 
deformat ion  caused by any given deformat ion  matrix 
which is nei ther  or thogonal  nor  symmetrical .  Even  a sys- 
tematic  study of the pat terns of the m ovem en t  paths 
obtained f rom its operat ion,  and a determinat ion of its 
deformat ion  ellipsoid may  not suffice to classify it suffi- 
ciently precisely or allocate it to its canonical form. A 
powerful  method  which may  be used for the investiga- 
tion of such matrices is to a t tempt  to reduce them to 
upper  tr iangular fo rm by means  of the Q--R algorithm 
(Hammar l ing  1970, pp. 138--46). 

The  deformat ion  matrices for some of the more  com- 
plex types of deformat ion  cannot  be  reduced to real 
upper  tr iangular forms. However ,  under  the action of 
the Q--R algorithm matr ices similar to 

o oo ro o oo 1 1 , , cosO sin , fcosO sin , 
0 - s i n 0  cos0_i L0 - s i n e  geosetJ 

1 , k '  
0 

converge on the canonical forms, often very rapidly. 
However ,  it is necessary to moni tor  the convergence as 
in some cases, after  an initial close approach,  the con- 
vergence becomes  a divergence. 

Finally, it should be  noted that  al though this paper  has 
been  concerned solely with investigating the special case 
of homogeneous  strain operat ing without translation, 
some of the methods  developed may  be  suitable for use 
in the study of more  generalised forms of deformation.  If 
the elements  in the deformat ion  matrix are replaced by 
suitable functions the deformat ion  caused becomes 
inhomogeneous  strain. Fur thermore ,  ff the deformat ion  
matrix is made  into a 4 x 4 matrix it can pe r fo rm opera-  
tions involving translation as well as deformation.  
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